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ABSTRACT 

 
This research investigated the use of fractal dimension 
measure to segment spatially disjoint regions of interest 
from simulated fractal clutter or background.  The 
underlying assumption is that a given region of interest 
in a real-world image has a different fractal dimension 
than its background.  We investigated virtually 
illuminated, digitally simulated fractal surfaces with 
known fractal dimensions.  The backgrounds we 
considered had various degrees of texture roughness.  
We constructed an optically based image segmentation 
system to perform the otherwise computationally 
intensive Fourier transform of the image to be 
segmented.  We compared the performance of this 
system to an all digital approach.  Though useful for 
such things as aerial and space based reconnaissance, 
there are many other applications that could also benefit 
from the techniques described here.  For instance, when 
applied to machine vision applications, these techniques 
could help reduce the time required to locate some tool 
against spatially disjoint clutter.  They could also prove 
useful to applications involving robotic navigation of 
guidance for hazardous material cleanup.  In both cases 
additional processing will allow the machine to make 
decisions based on information from a few regions of 
interest.   These techniques could also possibly prove 
useful as a preprocessor of imagery generated by 
medical scanners.  The rationale is that a growth may 
have a different fractal dimension than the surrounding 
tissue.  This work was completed at the Photonics 
Center of Rome Laboratory, Griffiss AFB, NY. 
 

I. INTRODUCTION 
 
Previous theoretical and experimental work1,2 
established a relationship between the topological 
features of a fractal surface, the surface's illuminated 
image, and its power spectrum.  From these 
relationships, we estimate a fractal dimension measure 
from an optical Fourier transform and digital post-
processing its power spectrum.  From these results, 
certain inferences can be drawn concerning the location 
of regions of interest.  Namely, the techniques discussed 
here can quickly spot features having different fractal 
dimensions from the surrounding clutter. 
 
This investigation compared the ability of an all digital 
technique to a hybrid optical-digital technique for 

estimating the fractal dimension of the computer 
generated imagery.  The digital method took a fast 
Fourier transform of the illuminated image, and used 
that to calculate the image's fractal dimension.  The 
optical-digital technique did essentially the same thing, 
though the Fourier transform was taken optically.  A 
Fourier lens, a 256x256 Semetex Magneto-Optic spatial 
light modulator (SLM) and a CCD camera at the Fourier 
plane composed the optical system.  Once we had the 
Fourier transform, digital post-processing calculated the 
fractal dimension of the original illuminated image.  
This digital post-processing was identical in both the 
digital system and the hybrid optical-digital system. 
 

II.  ALGORITHM 
 
We used the spectral synthesis method to generate 
fractal surfaces3.  First, we generated two dimensional 
random Fourier components Gi,j with a mean amplitude 
of zero and a standard deviation 

 
on the (i,j)th random discrete Fourier component, where 
H is related to the desired fractal dimension D4,5 of the 
surface by 

 
A computer performed an inverse Fourier transform to 
generate a fractal surface g(x,y) 

 
Surface g was illuminated using a pure Lambertian 
model where the intensity at a particular location I(x,y) 
is given by: 
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where px,y is the angle between the normal of g at (x0,y0) 
and the direction to the infinitely distant point source 
illuminant.  The normal N0 at (x0,y0) is: 

 
We calculated the power spectrum, PH(f,t) of I by 
summing the squares of amplitudes within particular 
frequency rings.  The computer then bandpass filtered 
the power spectrum, plotted it on a log-log graph, and 
fitted it to a line.  A linear relationship exists between 
the slope of the line -b and the fractal dimension D of 
the original illuminated image1,6. 

 
III. SURFACE GENERATION AND 

ILLUMINATION  
 
Twelve surfaces were created using the spectral 
synthesis method described above.  Illuminating each 
surface from a variety of angles required knowledge of 
the normal to the surface at each of the 65,536 points 
composing the surface.  The computer derived the 
normal of g(x0,y0) from the partial derivatives as 
described in (5) above.  To get these partial derivatives 
we used discrete Fourier transforms to numerically 
approximate these partial derivatives.  This approach 
was very compute intensive, and limited the number of 
Fourier components we could use. 
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Figure 1 - Optical System Schematic 

Six of these twelve surfaces used 16x16 Fourier 
components and the other six used 32x32 components.  
For each set of surfaces, we varied the H parameter from 
0.0 to 1.0 in increments of 0.2.  A computer virtually 
illuminated each of these twelve surfaces from six 
angles, and generated simulated imagery as viewed from 
directly above.  The six angles of illumination varied 
from 0 to 90 degrees relative to the viewing angle.  We 

stored the 72 resulting images in 256x256 BMP format 
gray scale files. 
 
We should note here that the surfaces images are not self 
shadowing.  To establish certain baseline characteristics 
of the algorithm and the optical system's performance, 
we decided to remain consistent with the notions 
established in previous literature on this subject1.  
Additionally, the surfaces considered followed the 
properties of a pure Lambertian illumination model for 
the same reason. 
 

IV. ESTABLISHING BASELINE 
CHARACTERISTICS 

 
An optical system like that shown in Figure 1 performed 
a Fourier transform of each of the 72 images.  This setup 
could take the Fourier transform only of binarized 
images.  The Semetex 256x256 SLM used in our 
experiment is a binary device.  As such, we thresholded 
the grayscale images at their average intensity level 
before placing them onto the SLM.  The Fourier 
transform of the image on the SLM was imaged onto the 
CCD camera.  A frame grabber card then captured this 
image into a personal computer.  The computer clipped 
and placed the image from the camera into a binary file 
for image processing. 
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Figure 2 - Sample Digital Images 

 
The digital technique used the fast Fourier transform 
(FFT) routines in the Image Pro Plus software package 
running on a 33MHz 80486DX computer.  Image Pro  
calculated the FFT of all the illuminated surface images 
 and stored the amplitude information in BMP binaries.  
We discarded the phase information.  Each 256x256 
Fourier transform required approximately five seconds 
to compute.  Figure 2 shows a typical image from its 
surface contour map, to its illuminated image, to the 
image of its FFT.  An example of the images taken from 
the optical system was not easily ported into this paper.   
 
Additional processing calculated the power spectrum of 
each of the 144 Fourier images and saved the data to 
ASCII files.  To reduce the effects of noise with the 
optical system (arising mainly from the pixilation of the 
SLM), we blocked the sections of the optical Fourier 
transform extending both horizontally and vertically 
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from the DC.  A computer digitally band pass filtered all 
of the Fourier transforms and graphed the resulting 
power spectra on a log-log plot. 

Figure 3 - Power Spectrum Plot  

The slope of the line fit to the data in the log-log plots is 
-b.  Figure 3 shows a typical example of the power 
spectrum and its linear fit.  We used equation (6) above 
to  calculate D.  Tables 1 through 4  show the values for 
D in each of the 144 Fourier transforms.  The H value 
refers to the parameter for generating the fractal surface, 
while t refers to the angle of the illumination.  Except 
extreme cases in illumination angle or the parameter H, 
the digitally computed values cluster closely to each 
other for a given fractal dimension.  The range of fractal 
dimension results for a particular value of H does not 
intrude upon the range calculated for another value of H, 
though it does occasionally occur. 
 

V. CHARACTERISTICS WHEN DEVIATING 
FROM THE BASELINE 

 
In Part IV we considered only nonoccluded fractal 
surfaces illuminated from a variety of angles.  A 
geometric shape (such as a square) can be placed over 
part of the illuminated image to see how this changes the 
fractal dimension measure D from the baseline 
established in Part IV.  (See figure 4.)  This was done 
with both a uniformly shaded square covering the 
middle of the selected images, and with a square region 
filled with random 8-bit values. (We call them a uniform 
pulse and a random pulse respectively).  Tables 5 
through 8 show values for D when we employed the two 
techniques on the two sets of surfaces. 
 
In each case, we handled the images identically to those 
in Part 4 above, and reduced the data in the same 
fashion.  Due to the large amount of energy in the higher 
frequencies of the random pulse, the slope increased, 
decreasing the value of b (flattening things out a bit).  
Similarly, there was a great deal of spectral energy along 
the axes, (characteristic of sharp edges) and a large 
value at the DC.   
 
The digital approach seems well suited to differentiate 
between the two pulse types and the unpulsed data in 
both the 16x16 and 32x32 Fourier component tests.  The 

difference between the maximum and minimum values 
is rarely greater than 0.1 save for values of H=1.0.  This 
implies that a deviation greater than 0.1 may show a 
potential region of interest, and may warrant further 
investigation by either human or electronic processing.  
Most of the uniform pulse images were at least 0.1 from 
all of the unpulsed images with that H value.  All of the 
random pulses were even further away. 
 

  
(a) Uniform pulse image (b) FT of uniform pulse 

 

  
(c) Random pulse image 

 
(d) FT of random pulse 

Figure 4 - FFT of Occluded Images 
 
Turning our attention to the optical setup, we see that 
there is a bit of a reduction in the ability to discriminate 
the random pulse and unpulsed data.  However, usually 
there is still little overlap between the two.  Here, we 
discriminate the uniform pulse much more easily than in 
the all digital process.  The difference in performance 
characteristics may have been the result of noise in the 
SLM.  Upon viewing the output from the SLM, there 
were several lines of light, parts of which should have 
been turned off.  Also, the light passing throughout the 
SLM at the region containing the random pulse did not 
appear distributed properly.  This may have contributed 
to the poor performance.  Pixelation was not as much of 
a factor as it could have been.  As noted earlier, we 
digitally blocked the axes when calculating the power 
spectrum.  This should have reduced, if not eliminated 
the effects of pixelation.  However, it also removed the 
spectral energy we expected to see in the uniform pulse. 

 
VI. PERFORMANCE COMPARISON 

 
Each approach described has strengths and weaknesses. 
 The primary advantage of the optical system is that the 
potential speed is far greater than that offered by any of 
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the priced digital alternatives.  Semetex claims a 50fps 
frame rate on its 256i.  Thus, 250 Fourier transforms can 
be performed optically in the time it takes to calculate 
one FFT on the digital platform used here.  This 
assumes that computer hardware controlling the optical 
system can retrieve imagery at a minimum of 50fps. 
 
There were several disadvantages when using the optical 
system as well.  The optical system seemed more prone 
to noise, and the Semetex requires a great deal of fine 
tuning to get the image displayed properly on the device. 
 Incorrect switching of entire rows and columns of 
pixels, SLM pixelation, and nonuniform illumination of 
the SLM all combined to produce noise at the detector 
array.  Optical aberrations and imperfect alignment 
generated crosstalk, further degrading discrimination 
ability.  Additionally, the Semetex often requires more 
than one write to the array to eliminate large horizontal 
bands of light from passing through the device.  Finally, 
we failed  to match Semetex's 50fps frame rate on the 
256i. 
 
The advantages of the digital system involve the ability 
to reduce the noise levels of the process.  Based on the 
results in the tables below, for a given H value, the 
fractal dimension measure D has less variation in the 
digital system than the optical.  FFTs have been 
sufficiently debugged, and computer performance has 
become increasingly cost-effective that digital FFTs are 
offering a serious challenge to the speed benefit derived 
from optical image processing.  This is especially the 
case when considering the time and resources required 
to write information to the SLM and read that data back 
from the CCD array.  Also, the digital system does not 
require throwing away as much information as does the 
optical system.   Digital systems use eight bit gray scale 
data, while optical systems require us to eliminate seven 
of those eight bits.   
 
The main disadvantage offered by the digital approach 
compared with the optical system is the speed.  Optical 
systems have the potential greatly outperform digital 
systems since they compute Fourier transforms at the 
speed of light.  However, severe bottlenecks exist when 
writing an image to the SLM and reading its Fourier 
Transform from the camera.  Improvements in optical 
device and analog to digital conversion technology may 
overcome with these bottlenecks. 
 

VII. CONCLUSIONS 
 
Based on the performance of the techniques discussed, it 
is possible to segment square pulses from fractal 
backgrounds based on the fractal dimension measure.  
This implies that there is some merit in considering how 

this approach deals with more sophisticated shapes 
occluding portions of more realistic scenery.  The next 
logical step in this line of investigation is to look at 
scanning across high resolution imagery to detect areas 
where abrupt changes in the fractal dimension occur. 
 
Though the capability to view even small (256x256) 
optical images in anything approaching a real-time 
fashion is expensive with the off-the-shelf technology, 
this technology has applications to other areas in which 
that capability is not much of a consideration.  These 
techniques could be employed to highlight regions 
within images taken by various pieces of medical 
scanning equipment or to automate the process of 
searching for regions of interest within aerial or space 
based reconnaissance imagery.  If the technology 
matures sufficiently, applications where timely image 
processing is critical (such as assembly lines and 
different robotics applications) will greatly benefit from 
these techniques. 
 

IX.  TABLES 
 

H\t 0°°°° 18°°°° 36°°°° 54°°°° 72°°°° 90°°°° 
0.0 2.043 2.005 1.944 1.906 1.905 1.940 
0.2 2.123 2.094 2.024 1.973 1.964 2.002 
0.4 2.198 2.172 2.102 2.049 2.038 2.070 
0.6 2.236 2.231 2.211 2.188 2.183 2.192 
0.8 2.011 2.044 2.114 2.140 2.128 2.109 
1.0 1.549 1.606 1.739 1.864 1.870 1.793 
Table 1 - Digital fractal dimension results D for 16x16 Fourier 

components with parameter H and illumination angle t 

H\t 0°°°° 18°°°° 36°°°° 54°°°° 72°°°° 90°°°° 
0.0 1.799 1.819 1.781 1.745 1.744 1.766 
0.2 1.91 1.92 1.876 1.832 1.828 1.860 
0.4 2.043 2.074 2.033 1.986 1.974 2.002 
0.6 2.244 2.307 2.286 2.246 2.230 2.260 
0.8 2.261 2.432 2.510 2.522 2.518 2.509 
1.0 1.751 2.072 2.311 2.434 2.442 2.351 
Table 2 - Digital fractal dimension results D for 32x32 Fourier 

components with parameter H and illumination angle t 

H\t 0°°°° 18°°°° 36°°°° 54°°°° 72°°°° 90°°°° 
0.0 1.707 1.765 1.652 1.613 1.704 1.776 
0.2 1.745 1.713 1.732 1.685 1.865 1.824 
0.4 1.735 1.740 1.700 1.809 1.828 1.844 
0.6 1.853 1.791 1.790 1.760 1.805 1.836 
0.8 1.845 1.806 1.876 1.823 1.872 1.900 
1.0 1.765 1.989 2.013 1.960 1.996 1.965 
Table 3 - Optical fractal dimension results D for 16x16 Fourier 

components with parameter H and illumination angle t 



H\t 0°°°° 18°°°° 36°°°° 54°°°° 72°°°° 90°°°° 
0.0 1.517 1.803 1.804 1.715 1.651 1.784 
0.2 1.503 1.804 1.803 1.581 1.667 1.868 
0.4 1.448 1.658 1.494 1.514 1.709 1.837 
0.6 1.473 1.459 1.527 1.602 1.784 1.828 
0.8 1.402 1.718 1.611 1.752 1.817 1.847 
1.0 1.759 1.885 1.814 1.833 1.823 1.873 
Table 4 - Optical fractal dimension results D for 32x32 Fourier 

components with parameter H and illumination angle t 

H\t 18°°°° 36°°°° 54°°°° 72°°°° 
0.4 (Random) 1.164 1.212 1.248 1.249 
0.4 (Uniform) 2.015 1.994 1.979 1.976 
0.6 ( Random) 1.097 1.124 1.150 1.145 
0.6 (Uniform) 1.992 2.018 2.033 2.051 

Table 5 - Digital fractal dimension results D for 16x16 Fourier 
components with parameter H, illumination angle t, and uniform 

or random pulse as indicated 

H\t 18°°°° 36°°°° 54°°°° 72°°°° 
0.4 (Random) 1.330 1.418 1.462 1.467 
0.4 (Uniform) 1.973 1.969 1.942 1.940 
0.6 ( Random) 1.233 1.322 1.370 1.370 
0.6 (Uniform) 2.071 2.106 2.113 2.126 

Table 6 - Digital fractal dimension results D for 32x32 Fourier 
components with parameter H, illumination angle t, and uniform 

or random pulse as indicated 

H\t 18°°°° 36°°°° 54°°°° 72°°°° 
0.4 (Random) 1.688 1.739 1.616 1.590 
0.4 (Uniform) 2.183 2.016 1.958 1.960 
0.6 ( Random) 1.779 1.692 1.681 1.691 
0.6 (Uniform) 2.224 2.062 2.037 1.992 
Table 7 - Optical fractal dimension results D for 16x16 Fourier 

components with parameter H, illumination angle t, and uniform 
or random pulse as indicated 

H\t 18°°°° 36°°°° 54°°°° 72°°°° 
0.4 (Random) 1.790 1.867 1.832 1.810 
0.4 (Uniform) 2.185 2.084 2.066 2.036 
0.6 ( Random) 2.005 1.870 1.785 1.735 
0.6 (Uniform) 2.071 2.106 2.113 2.126 
Table 8 - Optical fractal dimension results D for 32x32 Fourier 

components with parameter H, illumination angle t, and uniform 
or random pulse as indicated 
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